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ABSTRACT 

The strength of time-dependent correlations known as stride interval (SI) dynamics has 

been proposed as an indicator of neurologically healthy gait. Most recently, it has been 

hypothesized that these dynamics may be necessary for gait efficiency although the supporting 

evidence to date is scant. The current study examines over-ground SI dynamics, and their 

relationship with the cost of walking and physical activity levels in neurologically healthy 

children aged nine to 15 years. Twenty participants completed a single experimental session 

consisting of three phases: 10 minutes resting, 15 minutes walking and 10 minutes recovery. The 

scaling exponent () was used to characterize SI dynamics while net energy cost was measured 

using a portable metabolic cart, and physical activity levels were determined based on a 7-day 

recall questionnaire. No significant linear relationships were found between  and the net energy 

cost measures (r<0.07; p>0.25) or between  and physical activity levels (r=0.01, p=0.62). 

However, there was a marked reduction in the variance of  as activity levels increased. Over-

ground stride dynamics do not appear to directly reflect energy conservation of gait in 

neurologically healthy youth. However, the reduction in the variance of  with increasing 

physical activity suggests a potential exercise-moderated convergence towards a level of stride 

interval persistence for able-bodied youth reported in the literature. This latter finding warrants 

further investigation. 

Keywords: gait, stride-to-stride fluctuations, exercise, detrended fluctuation analysis 
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INTRODUCTION 

The analysis of gait has become incredibly advanced with the development of technologies such 

as motion capture, electromyography, force plates, and portable gas analysis systems. However, 

limitations such as the cost of equipment, time required for data collection and the invasive 

nature of the equipment suggest the need for more practical means of quantifying gait 

abnormalities [33]. The measurement of stride interval dynamics is inexpensive, non-invasive, 

and has shown promise as a potential tool for gait analysis [14]. 

The stride interval (SI), defined as the time between consecutive heel strikes of the same foot, 

exhibits fluctuations from one stride to the next. Traditionally, it was believed that individuals 

exhibit a preferred average SI, around which any variation was identified as random noise. 

However, recent non-linear time series analyses have revealed time dependent correlations 

embedded in the variation of SI data [17]. Essentially, SI fluctuations up to an hour apart exhibit 

statistical persistence, which can be quantified by the scaling exponent, ,  typically determined 

using detrended fluctuation analysis (DFA)  [5].  An  value of 0.5 indicates that the stride times 

in the SI time series are uncorrelated, while 0.5<<1.0 indicates statistical persistence in the time 

series [30]. Research has shown  to be sensitive to changes in neuromuscular function, age and 

speed [15, 16, 23]. 

To determine the stability of statistical persistence, Hausdorff et al. performed walking trials at 

participants’ slow, comfortable and fast walking speeds [18]. Stride interval time series remained 

in the statistical persistent range regardless of walking speed. Subsequently, Jordan et al. 

corroborated this finding, and further, showed  that the scaling exponent relates to speed in a U-
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shaped manner; with the lowest α value (0.70<α<0.75) occurring at the individual’s comfortable 

walking speed [23]. 

Statistical persistence also exhibit a unique developmental profile, evolving from primitive 

patterns in toddlers to robust correlations by pre-adolescence.  In a study of 50 healthy children 3 

to 14 years of age, the scaling exponent was highest in the youngest children, and tended to 

decrease towards adult values in the oldest age group [16]. These findings suggest that SI 

dynamics may not be fully developed in children 7 years of age, although they are typically 

regarded as having mature gait [22]. Exploring the opposite end of the age spectrum, the gait of 

elderly participants has been shown to lack the statistical persistence characteristic of the 

younger adult population [15, 27]. 

Numerous studies have shown that some neurological disorders can affect stride interval 

correlations. The values for statistical persistence in participants with Huntington’s disease (HD) 

[15], Parkinson’s disease (PD) and cerebral palsy [6] differ from those values in healthy young 

adults. In fact, the scaling exponent decreased linearly with the degree of functional impairment 

in the HD population. 

Interestingly, the previously mentioned conditions that induce changes in  are also known to 

affect the energy cost of walking. For example, an individual’s preferred walking speed (PWS) is 

that at which the metabolic cost is minimized [9]; when walking at speeds slower or faster than 

the PWS, energy consumption increases in a U-shaped fashion. This relationship mirrors the 

reported behaviour of α at varied walking speeds [23]. 

To date, only two studies have examined α and the energy cost of walking. Most recently, an 

investigation of SI dynamics in children aged 4-7 years identified no correlation between  and 



 Pediatric SI Dynamics, Energy & Activity  5 

 

energy cost [10]. However, this study only examined the gross energy cost of walking, which 

represents the total cost of walking inclusive of resting cost [32]. It is possible that between-

participant variability in the resting state could mask metabolic trends due solely to walking.  

The net energy cost, the difference between the total cost and resting cost, is therefore more 

suitable than the gross cost as a measure of energy consumption due to walking [32].  

Additionally, until age 7 a child’s gait is not fully optimized with respect to physiological, neural 

and musculoskeletal systems [22]. With so many factors inducing energetic and temporal 

variability, it is perhaps not surprising that no correlation was found.  

An earlier study looking at  and energy cost in both adult and elderly males found no 

association between the two measures [27]. However, the scaling exponents were estimated on 

the basis of only six minutes of walking data. Recent guidelines for use of DFA with gait data 

recommend a minimum of 600 strides for statistically stable estimation of  [8]. Given that 

healthy adults exhibit a preferred stride time of approximately 1s, a value that increases with age 

and pathology, it is unlikely that participants in Malatesta et al. achieved the recently 

recommended minimum number of strides [27]. While no relationship was found between  and 

energy cost, a positive correlation was identified between  and physical activity levels [27]. A 

more recent study identified the opposite relationship between SI dynamics and activity levels, in 

which trained runners tended to exhibit a lower  value than non-trained runners [29]. Hence, the 

current evidence is inconclusive about the relationship between alpha, energy cost and physical 

activity. 

The present study aimed to develop a better understanding of the relationship between the 

strength of statistical persistence, the net energy cost of walking and activity levels in typically 
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developing children, 9-15 years, an age at which gait is considered mature [9, 22]. A defined 

relationship between  and physical activity could also provide insight into the physiological 

mechanisms responsible for stride interval persistence, which to date remain unclear [10]. 

 

METHODS 

Participants. Twenty able-bodied children (three male) from a community aquatics program and 

various neighborhood elementary schools volunteered to participate in the study. The children 

participated during the academic school year (September – April). Participants had no history of 

neurological, musculoskeletal or cardiovascular injury or illness that would affect their gait or 

respiration. The mean age of participants was 11.3 ± 1.9 years. Mean height and mass were 1.53 

± 0.13 m and 45.61 ± 10.66 kg, respectively. 

The study was cleared by the Research Ethics Board of Holland Bloorview Kids Rehabilitation 

Hospital (Toronto, Canada). Participants and their guardians provided informed written assent 

and consent prior to participation in the study. 

Instrumentation. Heel strike data were collected using paper-thin force sensitive resistors (FSR) 

secured under the heel of each shoe (Model 406, Interlink Electronics, USA). Information from 

the FSR’s was recorded to a personal digital assistant (PDA; #X11-15454, Hewlett-Packard) at a 

rate of 250Hz. The wires from the sensors were clipped to the participant’s pants or shorts to 

reduce interference with normal walking. 

The energetic cost of walking was estimated using the Cosmed K4b
2
 (Cosmed, Italy), a portable 

gas analysis system that measures oxygen consumption and carbon dioxide production on a 



 Pediatric SI Dynamics, Energy & Activity  7 

 

breath-by-breath basis. The experimental setup is depicted in Figure 1, showing the equipment 

worn by participants during the session. The K4b
2
 system consists of a data processing unit 

containing O2 and CO2 analyzers, a battery pack, and a silicon facemask that harbours the flow-

rate turbine and gas sampling line. Facemasks were fitted to each participant to ensure an airtight 

seal around the nasal and oral cavities. Heart rate data were obtained via a heart rate transmitter 

fastened around the chest (WearLink 31, Polar Electro, Finland). 

The processing unit of the K4b
2
 was worn on the chest, while the battery pack and PDA were 

carried on the participant’s back. All equipment was affixed using an adapted version of the 

harness provided by Cosmed. The total weight of the equipment was approximately 1.8kg. All 

equipment was calibrated according to manufacturer’s specifications. Prior to each trial, the 

turbine was calibrated with a 3-1 syringe, and a two-point calibration of the O2 and CO2 

analysers was carried out using ambient air and a standard calibration gas mixture. 

Physical Activity Questionnaire. Participants filled out the physical activity questionnaire for 

older children (PAQ-C), a 7-day physical activity recall to assess general activity levels [26]. 

This questionnaire was developed as a method of discerning physical activity levels in school-

aged children. In the case that a participant was of high school age, or did not have recess at their 

school, the PAQ-A was administered. The PAQ-A is a slightly modified version of the PAQ-C 

with the “recess” item removed, making it applicable to high school students. The questionnaires 

consist of eight (PAQ-A) to nine (PAQ-C) questions related to activity habits during the school 

week. The first question of both the PAQ-C and PAQ-A consists of a checklist of 22 common 

physical activities, with 2 additional lines to specify “other” activity choices. Each activity is 

rated on a 5-point ordinal Likert scale that reflects the frequency of that activity in the last 7 days 

(1 = activity performed 0 times; 5 = activity performed 7 times or more). The overall score for 
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this question is the mean rating across all activities.  The remaining questions probe general 

physical activity on a time-of-day or day-of-the-week basis, also on a scale of 1 to 5. The 

average of all individual question scores yields a final physical activity score between 1 and 5. 

The PAQ-C and PAQ-A have been tested for various psychometric properties and have shown 

moderate to moderately high test-retest reliability (r = 0.30), internal consistency (Cronbach’s  

= 0.72-0.88), sensitivity to age and gender differences, and concurrent validity when compared 

against an activity monitor (Actigraph, r = 0.47, p<0.05) [21, 26, 28]. 

Procedure. All participants wore comfortable walking shoes and were familiarized with the 

experimental equipment and protocol. The participant’s age, height and mass (m) were recorded. 

No pre-session fast was requested, as this study examined the net cost of walking, which 

subtracts the resting level, and thus mitigates the effect of feeding-induced thermogenesis [32]. 

Study sessions consisted of three phases: rest, walk, and recovery. Each experiment began with 

the resting phase in which children were suited with the equipment and asked to sit quietly for 10 

minutes while watching cartoons. During this time, resting oxygen uptake data were collected. 

Schwartz et al. found that 10 minutes of data collection was required to reliably estimate resting 

energy [32]. Before the walking phase began, investigators accompanied participants on two 

warm up laps around the rectangular path (84.9m long, 2.43m wide) to ensure familiarization 

with the equipment. If equipment was restricting normal walking in any way, adjustments were 

made and warm up laps were repeated until the participant could walk comfortably. 

The walking phase involved 15 minutes of walking at a comfortable pace. Comfortable pace was 

described to the participants as the pace they would walk if they were on their way home from 

school. As children exhibit an average stride interval time of approximately 1.0s, fifteen minutes 
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of continuous walking was required to ensure enough strides were collected to obtain stable 

estimates of  [8]. The time required to complete each lap was measured using a hand-held 

timer, and speed (v) was determined by dividing the average lap time by the distance covered in 

each lap (84.9m). Researchers walked behind participants to avoid influencing walking speed. 

The recovery phase was similar to the resting phase; participants sat quietly watching cartoons 

for 10 minutes while oxygen uptake data were collected. Upon completion of the recovery phase, 

all equipment was removed, and participants were asked to complete the questionnaire. 

Data Analysis. Stride intervals were extracted from the heel strike data using a probabilistic SI 

extraction algorithm that locates heel strike times through changes in magnitude and slope of the 

force [6]. From the extracted stride intervals, strides that fell outside 0.01% and 99.99% of a 

gamma distribution fit were eliminated. These strides were considered as unphysiologically long 

or short and were likely due to occasional sensor noise [10]. To minimize ‘start up’ and ‘end’ 

effects, 30 seconds of data were trimmed from the beginning and the end of each time series. 

Then, the scaling exponent was determined using DFA from the remaining 14 minutes of data 

[8]. A detailed description of DFA can be found in [30]. Briefly, the root-mean-square 

fluctuations of integrated and detrended data are measured in observation windows of various 

sizes, and then plotted against the size of the window on a log-log scale [20]. The scaling 

exponent, α, represents the slope of this line on a log-log plot. The variance of the SI time series 

was evaluated using the coefficient of variation (CV). 

Steady state values of metabolic data were determined after 2 minutes of acclimatization to the 

sitting and walking tasks [1]. Determination of steady state breaths followed the procedure 

proposed by Schwartz [32]. For the measurement at each breath, we formed a window of 
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observation encompassing recordings within ±90s of the breath under consideration. For each 

180s window of data, we tested the null hypothesis of steadiness using Kendall’s Tau. If the null 

hypothesis was not rejected, the recording under consideration would be labeled as occurring 

within a “steady state breath”. The overall steady state value for each condition (resting, walking 

or recovery) was then defined as the average of all values coinciding with steady state breaths. 

From the oxygen uptake data, the following variables were calculated: 

Net Energy Consumption 

net

2OV  = 222 O J/mL 20.1 OVOV 
restgross   

Net Energy Cost  



VO 2
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












2
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v
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n e t
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

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

















m

v

restgross

2
22 O J/mL 20.1

OVOV 

 

where, as previously denoted, v is the speed of walking, and m is the mass of the 

participant.



VO 2

net

 was determined in the pre-exercise phase, where the participant was sitting 

quietly for ten minutes, allowing resting energy cost to be measured. Resting VO2 values were 

recorded during sitting. 



 Pediatric SI Dynamics, Energy & Activity  11 

 

An energy equivalent of 20.1 J/mL O2 was used to convert oxygen uptake data into energy 

consumption [3]. The use of a constant term for conversion of oxygen to energy values has been 

validated in children older than 6 years of age [31, 35]. 

Participants were divided into two groups based on activity levels. The ‘high activity’ group 

included children with activity scores above three, and those with activity scores below three 

were deemed the ‘low activity’ group (no scores were equal to three). A score of three was used 

as the divisor, as it represented both the mid-point of the activity scale and the mean of the study 

population’s activity scores. 

The Mann-Whitney test was used to test for differences in energy and stride variables between 

low and high activity subgroups. A linear regression analysis is used to explore potential trends 

between the variables. In all analyses, results were considered statistically significant if p<0.05. 

 

RESULTS  

Table 1 provides descriptive statistics of the study population, and Tables 2 and 3 summarize the 

results of the between-group analysis.  No variables in Tables 2 and 3 exhibited statistical 

difference between the two activity levels (minimum p>0.059).  A linear regression analysis 

revealed no statistical dependence  between the scaling exponent and any other variable (p > 

0.129). Lastly, activity level shared no dependence with the net energy cost measures, 2OV  

(p=0.602), 



VO 2  (p=0.788), 



VO2/kg (p=0.082). 

However, the between-participant variability of  was markedly reduced as activity levels 

increased (Figure 2). The reduction of variance was quantified by performing an F-test between 
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the alpha values of the low and high activity groups. The difference in the variance of the two 

groups approached significance (F=3.66, p=0.054). 

A linear regression analysis was used to identify any age effects on the considered variables. 

Height, mass, average SI time, CV, and 



VO2/kg (p < 0.039) were all associated with age, 

whereas speed, activity score, , 2OV , 



VO 2   exhibited no significant linear relationship with 

age (p > 0.456).Similarly, the regression analysis revealed that activity levels were not associated 

with any other variables (p > 0.082). 

 

DISCUSSION 

In an effort to better understand the relationship between the strength of statistical persistence, 

energy cost and physical activity levels, this study examined overground walking in children at 

an age at which gait is generally considered to be mature. No simple linear relationships were 

identified between the energy cost of walking, physical activity and α. However, the variance in 

α tended to decrease as activity levels increased across the study population. All variables, 

including energy cost,  and the speed of walking were within the normal range reported for 

individuals of the same age [9, 16, 38]. 

The scaling exponent demonstrated no dependence on age, suggesting that SI dynamics as 

described by the statistical persistence were mature in the individuals studied. We further 

explored this finding by comparing the α values obtained in this study with those from previous 

reports. We found that the α values reported in this study are well within the published range for 
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healthy adults. Thus, we contend that SI dynamics appear to be mature in children over the age 

of 9 years. 

The lack of correlation found between  and the physiological cost of walking is consistent with 

that of previous studies in younger children [10] and the elderly [27]. This finding could be 

partially attributed to the relatively small data set, though participants exhibited a range of 

energy cost and  values similar to those of other studies [9, 10, 16]. Therefore, corroborating 

previous investigations [10, 27], our present findings would suggest that SI dynamics are not 

reflected in the energy cost of walking in healthy, typically developing individuals. 

Physical activity levels and  were not significantly correlated with each other.  This finding 

may be a consequence of the homogeneity of the study sample in terms of physical activity 

levels. The majority of the children involved in this study were very active, and as such the range 

of physical activity scores was relatively small and may have only represented a limited region 

of the alpha-energy plane. It is conceivable that  may be robust to a range of variations of 

energy cost as a natural adaptive gait timing control mechanism, just as α is robust to dual-

tasking, and peripheral feedback [13, 25]. Kiefer et al. suggested that a change in α due to dual-

tasking may require the performance of a more attention-demanding assignment than tapping 

[25]. Perhaps, an α-energy dependence emerges only at extreme levels of energy expenditures. 

To explore this conjecture, a future study ought to include individuals known to have 

exaggerated energy costs during walking (e.g., children with spastic diplegic cerebral palsy). 

The lack of correlation between activity level and scaling exponent may also be attributed to the 

limited sensitivity of the questionnaire. In particular, the PAQ-C/PAQ-A does not provide 

information regarding the duration or intensity of activity performed [26]. For example, an “after 
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school activity” may be moderate intensity, such as a leisurely bike ride, or high intensity, such 

as a competitive soccer practice. This additional level of discernment would yield a more 

realistic physical activity score reflecting the frequency, duration and intensity of activity. Lack 

of sensitivity of the questionnaire would also help explain why children with higher physical 

activity levels were found to exhibit a higher cost of walking in this study. We suggest that future 

investigations utilize either a questionnaire with both time and intensity data, or more objective 

measures of daily physical activity such as heart rate monitors or accelerometers [2]. 

Although physical activity level did not exhibit a simple linear relationship with , an interesting 

pattern in  variation was observed. Generally, the between-participant variation in  decreased 

as activity levels increased. In fact, between participants with the lowest and highest activity 

levels, the variation in  dropped by approximately 60%. This interesting finding could suggest 

that the locomotive practice facilitated by physical activity further refines SI scaling properties 

after maturation. Furthermore, previous work has demonstrated that an alteration in joint/muscle 

function is observed to be accompanied by a greater physiological cost of walking.  It is 

plausible that limb/trunk mechanics may be additional parameters that have shared variance with 

the physiological cost of walking. 

Training has been shown to improve efficiency, optimize muscle activation, and decrease 

variability in interlimb coordination [34]. Specifically, practice refines intended movements by 

reducing SI variability as measured by the coefficient of variation (CV) [12, 29]. The findings of 

the current study are exceptional in that the reduction in variability is not reflected in the CV of 

the SI, but in the variance of the scaling exponent of the participants. A potential explanation for 

this discrepancy could be that the aforementioned studies investigated the effect of task-specific 

practice, thereby reducing the task-specific CV, employing target movements, whereas the 
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current study examined daily physical activity as a form of general locomotor practice, thus 

minimally affecting SI variability, but more broadly impacting motor timing [12]. The apparent 

exercise-moderated reduction in the variance in α may represent the convergence of SI dynamics 

to previously reported normal levels [20]. 

The reduction in the variability of  with respect to activity level is supported by the common 

core hypothesis of human movement [39]. This hypothesis states that “all forms of rhythmic 

human movement share a similar neural control, which can be thought of as a common core 

composed of oscillatory neurons that drive the basic motor pattern”[39]. Thus, participation in 

any activity involving rhythmic movement (i.e., cycling, skating, and swimming) would translate 

into training of the common core.  Furthermore, the neuronal group selection theory suggests that 

practice can optimize the selection of motor commands, reducing the variability of the output 

[11]. 

In the present study, it would be presumptive to say that α is converging towards optimal levels, 

as no optimal  value has been prescribed in the literature. The α values reported in this paper 

fall within the same range of  values previously reported in the literature for healthy adults, 

leaving no discernible ‘optimal’ value for the scaling exponent. This is in large part due to the 

different lengths of data studied, and different window sizes used for analysis. For  to become 

useful as tool for monitoring disease progression and assessment of therapeutic interventions, it 

is necessary to identify normative values for the populations studied. That being said, it is highly 

recommended that future studies of SI scaling properties follow methodological guidelines (such 

as those outlined in [8]) in order to facilitate accurate comparisons across studies. 
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The health benefits of physical activity are irrefutable. Regular exercise has been shown to be a 

powerful preventative tool against cardiovascular disease, diabetes, hypertension, obesity and 

depression to name a few [37]. The findings of this study suggest that habitual physical activity 

may also help to tune the complex temporal coordination of walking. However, future 

investigations of the effect of physical activity on  with larger populations and more varied 

habitual activity levels among participants are necessary to better elucidate this relationship. 

Specifically, prospective studies of the effect of exercise interventions on , such as those in the 

cardiovascular literature, could provide insight into the effects of physical activity as well as the 

mechanisms controlling the complex SI fluctuations. 

Lastly, it should be pointed out that while resting VO2 values were estimated in a seated posture, 

we do not expect gross differences between resting energy expenditure in sitting and standing 

positions, as suggested by a recent study with adult participants [40]. One third of the 

participants in that study showed no difference between resting energy expenditure values 

estimated from quiet standing and sitting. Only 18% of participants showed elevated energy 

expenditure during standing. For the remainder, standing energy expenditure started at higher 

levels but approached sitting levels during the latter half of the measurement. Overall, the 

average increase in energy expenditure was less than 6%. A future pediatric study would be 

required to confirm definitively the equivalence of sitting and standing resting energy estimates 

in children. We do reiterate that for practical purposes (given the pediatric population), a sitting 

rest energy expenditure measurement was logistically more convenient. 
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TABLE 1 

Variable Minimum Maximum Mean SD 

Average SI time 0.910 1.220 1.075 0.078 

SI coefficient of variation (CV) 0.016 0.047 0.029 0.007 

Speed (m/s) 0.990 1.510 1.260 0.138 

Activity score 2.052 3.926 2.999 0.576 

α 0.649 1.071 0.853 0.117 

2OV
 (J/s) 

51.03 160.3 116.3 37.08 

VO2 (J/m) 41.91 118.0 91.56 19.80 

VO2/kg (J/kg/m) 1.466 3.175 2.045 0.418 

 

 

TABLE 2 

Variable Low activity (n = 8) High activity (n = 12) p 

Age (yrs) 11.25 ± 1.981 10.83 ± 2.125 0.662 

Height (cm) 154.5 ± 13.98  151.5 ± 13.34  0.589 

Mass (kg) 49.75 ± 11.54 42.85 ± 9.528 0.105 

Average SI time 1.098 ± 0.062 1.060 ± 0.086 0.297 

SI coefficient of variation (CV) 0.028 ± 0.007 0.030 ± 0.007 0.787 

Speed (m/s) 1.234 ± 0.153 1.278 ± 0.130 0.487 

α 0.882 ± 0.157 0.833 ± 0.082 0.464 

2OV
 (J/s) 

112.2 ± 33.51 118.9 ± 91.23 0.616 

VO2 (J/m) 90.84 ± 23.24 92.04 ± 18.24 0.847 

VO2/kg (J/kg/m) 1.831 ± 0.294 2.188 ± 0.437 0.059 
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FIGURE 1: 
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FIGURE 2 

 

 

 


